Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Clojure Data Analysis Cookbook - Second Edition

You're reading from   Clojure Data Analysis Cookbook - Second Edition Dive into data analysis with Clojure through over 100 practical recipes for every stage of the analysis and collection process

Arrow left icon
Product type Paperback
Published in Jan 2015
Publisher
ISBN-13 9781784390297
Length 372 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Eric Richard Rochester Eric Richard Rochester
Author Profile Icon Eric Richard Rochester
Eric Richard Rochester
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Importing Data for Analysis 2. Cleaning and Validating Data FREE CHAPTER 3. Managing Complexity with Concurrent Programming 4. Improving Performance with Parallel Programming 5. Distributed Data Processing with Cascalog 6. Working with Incanter Datasets 7. Statistical Data Analysis with Incanter 8. Working with Mathematica and R 9. Clustering, Classifying, and Working with Weka 10. Working with Unstructured and Textual Data 11. Graphing in Incanter 12. Creating Charts for the Web Index

Passing vectors into R


In order to do very complex or meaningful analysis, we'll need to be able to pass vector or matrix data into R to operate on and analyze.

Let's see how to do this.

Getting ready

We must first complete the recipe, Setting up R to talk to Clojure, and have Rserve running. We must also have the Clojure-specific parts of that recipe done and the connection to Rserve made.

We'll also need access to the clojure.string namespace:

(require '[clojure.string :as str])

How to do it…

To make passing values into R easier, we'll first define a protocol and then we'll use it to pass a matrix to R:

  1. In order to handle the conversion of all the data types into a string that R can read, we'll define a protocol, ToR. Any data types that we want to marshal into R must implement this, as follows:

    (defprotocol ToR
      (->r [x] "Convert an item to R."))
  2. Now we'll implement this protocol for sequences, vectors, and numeric types:

    (extend-protocol ToR
      clojure.lang.ISeq
      (->r [coll] (str "c(" (str...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime