Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Big Data Analysis with Python

You're reading from   Big Data Analysis with Python Combine Spark and Python to unlock the powers of parallel computing and machine learning

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781789955286
Length 276 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Authors (3):
Arrow left icon
Ivan Marin Ivan Marin
Author Profile Icon Ivan Marin
Ivan Marin
Sarang VK Sarang VK
Author Profile Icon Sarang VK
Sarang VK
Ankit Shukla Ankit Shukla
Author Profile Icon Ankit Shukla
Ankit Shukla
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Big Data Analysis with Python
Preface
1. The Python Data Science Stack 2. Statistical Visualizations FREE CHAPTER 3. Working with Big Data Frameworks 4. Diving Deeper with Spark 5. Handling Missing Values and Correlation Analysis 6. Exploratory Data Analysis 7. Reproducibility in Big Data Analysis 8. Creating a Full Analysis Report Appendix

Introduction


In the last chapter, we learned that the libraries that are most commonly used for data science work with Python. Although they are not big data libraries per se, the libraries of the Python Data Science Stack (NumPy, Jupyter, IPython, Pandas, and Matplotlib) are important in big data analysis.

As we will demonstrate in this chapter, no analysis is complete without visualizations, even with big datasets, so knowing how to generate images and graphs from data in Python is relevant for our goal of big data analysis. In the subsequent chapters, we will demonstrate how to process large volumes of data and aggregate it to visualize it using Python tools.

There are several visualization libraries for Python, such as Plotly, Bokeh, and others. But one of the oldest, most flexible, and most used is Matplotlib. But before going through the details of creating a graph with Matplotlib, let's first understand what kinds of graphs are relevant for analysis.

You have been reading a chapter from
Big Data Analysis with Python
Published in: Apr 2019
Publisher: Packt
ISBN-13: 9781789955286
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image