Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
AWS Certified Machine Learning - Specialty (MLS-C01) Certification Guide

You're reading from   AWS Certified Machine Learning - Specialty (MLS-C01) Certification Guide The ultimate guide to passing the MLS-C01 exam on your first attempt

Arrow left icon
Product type Paperback
Published in Feb 2024
Publisher Packt
ISBN-13 9781835082201
Length 342 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Somanath Nanda Somanath Nanda
Author Profile Icon Somanath Nanda
Somanath Nanda
Weslley Moura Weslley Moura
Author Profile Icon Weslley Moura
Weslley Moura
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Chapter 1: Machine Learning Fundamentals FREE CHAPTER 2. Chapter 2: AWS Services for Data Storage 3. Chapter 3: AWS Services for Data Migration and Processing 4. Chapter 4: Data Preparation and Transformation 5. Chapter 5: Data Understanding and Visualization 6. Chapter 6: Applying Machine Learning Algorithms 7. Chapter 7: Evaluating and Optimizing Models 8. Chapter 8: AWS Application Services for AI/ML 9. Chapter 9: Amazon SageMaker Modeling 10. Chapter 10: Model Deployment 11. Chapter 11: Accessing the Online Practice Resources 12. Other Books You May Enjoy

Dealing with text data

You have already learned how to transform categorical features into numerical representations, either using label encoders, ordinal encoders, or one-hot encoding. However, what if you have fields containing long pieces of text in your dataset? How are you supposed to provide a mathematical representation for them in order to properly feed ML algorithms? This is a common issue in Natural Language Processing (NLP), a subfield of AI.

NLP models aim to extract knowledge from texts; for example, translating text between languages, identifying entities in a corpus of text (also known as Name Entity Recognition, or NER for short), classifying sentiments from a user review, and many other applications.

Important note

In Chapter 8, AWS Application Services for AI/ML, you will learn about some AWS application services that apply NLP to their solutions, such as Amazon Translate and Amazon Comprehend. During the exam, you might be asked to think about the fastest...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image