Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Autodesk AutoCAD 2013 Practical 3D Drafting and Design

You're reading from   Autodesk AutoCAD 2013 Practical 3D Drafting and Design Take your AuotoCAD design skills to the next dimension by creating powerful 3D models.

Arrow left icon
Product type Paperback
Published in Apr 2013
Publisher Packt
ISBN-13 9781849699358
Length 374 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
JOAO ANTONIO C DOS SANTOS JOAO ANTONIO C DOS SANTOS
Author Profile Icon JOAO ANTONIO C DOS SANTOS
JOAO ANTONIO C DOS SANTOS
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Autodesk AutoCAD 2013 Practical 3D Drafting and Design
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Introduction to 3D Design 2. Visualizing 3D Models FREE CHAPTER 3. Coordinate Systems 4. Creating Solids and Surfaces from 2D 5. 3D Primitives and Conversions 6. Editing in 3D 7. Editing Solids and Surfaces 8. Inquiring the 3D model 9. Documenting a 3D Model 10. Rendering and Illumination 11. Materials and Effects 12. Meshes and Surfaces Final Considerations Index

The Z coordinate


3D is all about the third Z coordinate. In 2D, we only care for the X and Y axes, but never used the Z axis. And most of the time, we don't even use coordinates, just the top-twenty AutoCAD commands, the Ortho tool, and so on. But in 3D, the correct use of coordinates can substantially accelerate our work. We will first briefly cover how to introduce points by coordinates and how to extrapolate to the third dimension.

Absolute coordinates

The location of all entities in AutoCAD is related to a coordinate system. Any coordinate system is characterized by an origin and positive directions for the X and Y axes. The Z axis is obtained directly from the X and Y axes by the right-hand rule: if we rotate the right hand from the X axis to the Y axis, the thumb indicates the positive Z direction.

Picture that when prompting for a point; besides specifying it in the drawing area with a pointing device such as a mouse, we can enter coordinates using the keyboard.

The format for the absolute Cartesian coordinates related to the origin is defined by the values of the three orthogonal coordinates, namely, X, Y, and Z, separated by commas:

X coordinate, Y coordinate, Z coordinate

The Z coordinate can be omitted.

For instance, if we define a point with the absolute coordinates 30, 20, and 10, this means 30 absolute is in the X direction, 20 is in the Y direction, and 10 is in the Z direction.

Relative coordinates

Frequently, we want to specify a point in the coordinates, but one that is related to the previous point. The format for the relative Cartesian coordinates is defined by the symbol AT (@), followed by increment values in the three directions, separated by commas:

@X increment, Y increment, Z increment

Of course, one or more increments can be 0. The Z increment can be omitted.

For instance, if we define a point with relative coordinates, @0,20,10, this means in relation to the previous point, 0 is in X, 20 is in Y, and 10 is in Z directions.

Point filters

When we want to specify a point but decompose it step-by-step, that is, separate its coordinates based on different locations, we may use filters. When prompting for a point, we access filters by digitizing the X, Y, or Z axes for individual coordinates, or XY, YZ, or ZX for pairs of coordinates. Another way is from the osnap menu, CTRL + mouse right-click, and then Point Filters. AutoCAD requests for the remaining coordinates until the completion of point definition.

Imagine that we want to specify a point, for instance, the center of a circle, where its X coordinate is given by the midpoint of an edge, its y coordinate is the midpoint of another edge, and finally its Z coordinate is any point on a top face. Assuming that Midpoint osnap is predefined, the dialog should be:

Command: CIRCLE
Specify center point for circle or [3P/2P/Ttr (tan tan radius)]: .X
of midpoint of edge
(need YZ): .Y
of midpoint of edge
(need Z): any point on top face
Specify radius of circle or [Diameter]: value
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image