Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Artificial Intelligence with Python

You're reading from   Artificial Intelligence with Python A Comprehensive Guide to Building Intelligent Apps for Python Beginners and Developers

Arrow left icon
Product type Paperback
Published in Jan 2017
Publisher Packt
ISBN-13 9781786464392
Length 446 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Prateek Joshi Prateek Joshi
Author Profile Icon Prateek Joshi
Prateek Joshi
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Introduction to Artificial Intelligence FREE CHAPTER 2. Classification and Regression Using Supervised Learning 3. Predictive Analytics with Ensemble Learning 4. Detecting Patterns with Unsupervised Learning 5. Building Recommender Systems 6. Logic Programming 7. Heuristic Search Techniques 8. Genetic Algorithms 9. Building Games With Artificial Intelligence 10. Natural Language Processing 11. Probabilistic Reasoning for Sequential Data 12. Building A Speech Recognizer 13. Object Detection and Tracking 14. Artificial Neural Networks 15. Reinforcement Learning 16. Deep Learning with Convolutional Neural Networks

What is unsupervised learning?


Unsupervised learning refers to the process of building machine learning models without using labeled training data. Unsupervised learning finds applications in diverse fields of study, including market segmentation, stock markets, natural language processing, computer vision, and so on.

In the previous chapters, we were dealing with data that had labels associated with it. When we have labeled training data, the algorithms learn to classify data based on those labels. In the real world, we might not always have access to labeled data. Sometimes, we just have a lot of data and we need to categorize it in some way. This is where unsupervised learning comes into picture. Unsupervised learning algorithms attempt to build learning models that can find subgroups within the given dataset using some similarity metric.

Let's see how we formulate the learning problem in unsupervised learning. When we have a dataset without any labels, we assume that the data is generated...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime