Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Applied Unsupervised Learning with R

You're reading from   Applied Unsupervised Learning with R Uncover hidden relationships and patterns with k-means clustering, hierarchical clustering, and PCA

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher
ISBN-13 9781789956399
Length 320 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Bradford Tuckfield Bradford Tuckfield
Author Profile Icon Bradford Tuckfield
Bradford Tuckfield
Alok Malik Alok Malik
Author Profile Icon Alok Malik
Alok Malik
Arrow right icon
View More author details
Toc

Introduction to Density-Based Clustering (DBSCAN)


Density-based clustering or DBSCAN is one of the most intuitive forms of clustering. It is very easy to find naturally occurring clusters and outliers in data with this type of clustering. Also, it doesn't require you to define a number of clusters. For example, consider the following figure:

Figure 2.2: A sample scatter plot

There are four natural clusters in this dataset and a few outliers. So, DBSCAN will segregate the clusters and outliers, as depicted in the following figure, without you having to tell it how many clusters to identify in the dataset:

Figure 2.3: Clusters and outliers classified by DBSCAN

So, DBSCAN can find regions of high density separated by regions of low density in a scatter plot.

Steps for DBSCAN

As mentioned before, DBSCAN doesn't require you to choose a number of clusters, but you have to choose the other two parameters to perform DBSCAN. The first parameter is commonly denoted by ε (epsilon), which denotes the maximum...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image