Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Apache Spark Machine Learning Blueprints

You're reading from   Apache Spark Machine Learning Blueprints Develop a range of cutting-edge machine learning projects with Apache Spark using this actionable guide

Arrow left icon
Product type Paperback
Published in May 2016
Publisher Packt
ISBN-13 9781785880391
Length 252 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Alex Liu Alex Liu
Author Profile Icon Alex Liu
Alex Liu
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Spark for Machine Learning FREE CHAPTER 2. Data Preparation for Spark ML 3. A Holistic View on Spark 4. Fraud Detection on Spark 5. Risk Scoring on Spark 6. Churn Prediction on Spark 7. Recommendations on Spark 8. Learning Analytics on Spark 9. City Analytics on Spark 10. Learning Telco Data on Spark 11. Modeling Open Data on Spark Index

Results explanation


After we have passed our model evaluation stage and decided to select the estimated and evaluated model as our final model, our next task is to interpret results to the university leaders and technicians.

In terms of explaining the machine learning results, the university is particularly interested in, firstly, understanding how their designed interventions affect student attrition, and, secondly, among the common reasons of finances, academic performance, social/emotional encouragement, and personal adjustment, which has the biggest impact.

We will work on results explanation with our focus on big influencing variables in the following sections.

Calculating the impact of interventions

The following summarizes some of the result samples briefly, for which we can use some functions from randomForest and decision tree to produce.

With Spark 1.5, you can use the following code to obtain a vector of feature importance:

val importances: Vector = model.featureImportances

With the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image