Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Python Programming

You're reading from   Advanced Python Programming Build high performance, concurrent, and multi-threaded apps with Python using proven design patterns

Arrow left icon
Product type Course
Published in Feb 2019
Publisher Packt
ISBN-13 9781838551216
Length 672 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Quan Nguyen Quan Nguyen
Author Profile Icon Quan Nguyen
Quan Nguyen
Sakis Kasampalis Sakis Kasampalis
Author Profile Icon Sakis Kasampalis
Sakis Kasampalis
Dr. Gabriele Lanaro Dr. Gabriele Lanaro
Author Profile Icon Dr. Gabriele Lanaro
Dr. Gabriele Lanaro
Arrow right icon
View More author details
Toc

Table of Contents (41) Chapters Close

Title Page
Copyright
About Packt
Contributors
Preface
Benchmarking and Profiling Pure Python Optimizations FREE CHAPTER Fast Array Operations with NumPy and Pandas C Performance with Cython Exploring Compilers Implementing Concurrency Parallel Processing Advanced Introduction to Concurrent and Parallel Programming Amdahl's Law Working with Threads in Python Using the with Statement in Threads Concurrent Web Requests Working with Processes in Python Reduction Operators in Processes Concurrent Image Processing Introduction to Asynchronous Programming Implementing Asynchronous Programming in Python Building Communication Channels with asyncio Deadlocks Starvation Race Conditions The Global Interpreter Lock The Factory Pattern The Builder Pattern Other Creational Patterns The Adapter Pattern The Decorator Pattern The Bridge Pattern The Facade Pattern Other Structural Patterns The Chain of Responsibility Pattern The Command Pattern The Observer Pattern 1. Appendix 2. Other Books You May Enjoy Index

Profiling memory usage with memory_profiler


In some cases, high memory usage constitutes an issue. For example, if we want to handle a huge number of particles, we will incur a memory overhead due to the creation of many Particle instances.

The memory_profiler module summarizes, in a way similar to line_profiler, the memory usage of the process.

Note

The memory_profiler package is also available on the Python Package Index. You should also install the psutil module (https://github.com/giampaolo/psutil) as an optional dependency that will make memory_profiler considerably faster.

Just like line_profiler, memory_profiler also requires the instrumentation of the source code by placing a @profile decorator on the function we intend to monitor. In our case, we want to analyze the benchmark function.

We can slightly change benchmark to instantiate a considerable amount (100000) of Particle instances and decrease the simulation time:

    def benchmark_memory(): 
        particles = [Particle(uniform(-1.0, 1.0), 
                              uniform(-1.0, 1.0), 
                              uniform(-1.0, 1.0)) 
                      for i in range(100000)] 

        simulator = ParticleSimulator(particles) 
        simulator.evolve(0.001)

We can use memory_profiler from an IPython shell through the %mprun magic command as shown in the following screenshot:

Note

It is possible to run memory_profiler from the shell using the mprof run command after adding the @profile decorator.

From the Increment column, we can see that 100,000 Particle objects take 23.7 MiB of memory.

Note

1 MiB (mebibyte) is equivalent to  1,048,576 bytes. It is different from 1 MB (megabyte), which is equivalent to 1,000,000 bytes.

We can use __slots__ on the Particle class to reduce its memory footprint. This feature saves some memory by avoiding storing the variables of the instance in an internal dictionary. This strategy, however, has a drawback--it prevents the addition of attributes other than the ones specified in __slots__ :

    class Particle:
        __slots__ = ('x', 'y', 'ang_vel') 

        def __init__(self, x, y, ang_vel): 
            self.x = x 
            self.y = y 
            self.ang_vel = ang_vel

We can now rerun our benchmark to assess the change in memory consumption, the result is displayed in the following screenshot:

By rewriting the Particle class using __slots__, we can save about 10 MiB of memory.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image