Bayesian networks are probabilistic graphical models used for understanding how different variables interact with each other. They are built by exploiting the conditional dependencies of each variable using Bayesian theory. For example, let's assume that we have three variables: sleep quality, diet quality, and work performance. For the sake of simplicity, let's also assume that each variable can only take two values: high and low. In our usual regression or classification framework, we would model one of these variables in terms of all the rest. Of course, we would need to take care to choose a dependent variable that is caused by the covariates in some way (in order to make an inference in a regression context, causality needs to flow from the covariates to the dependent variable). BNs operate differently, and in this case, we...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand