Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Deep Learning Essentials

You're reading from   R Deep Learning Essentials A step-by-step guide to building deep learning models using TensorFlow, Keras, and MXNet

Arrow left icon
Product type Paperback
Published in Aug 2018
Publisher Packt
ISBN-13 9781788992893
Length 378 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Joshua F. Wiley Joshua F. Wiley
Author Profile Icon Joshua F. Wiley
Joshua F. Wiley
Mark Hodnett Mark Hodnett
Author Profile Icon Mark Hodnett
Mark Hodnett
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Deep Learning 2. Training a Prediction Model FREE CHAPTER 3. Deep Learning Fundamentals 4. Training Deep Prediction Models 5. Image Classification Using Convolutional Neural Networks 6. Tuning and Optimizing Models 7. Natural Language Processing Using Deep Learning 8. Deep Learning Models Using TensorFlow in R 9. Anomaly Detection and Recommendation Systems 10. Running Deep Learning Models in the Cloud 11. The Next Level in Deep Learning 12. Other Books You May Enjoy

Neural networks in R

We will build several neural networks in this section. First, we will use the neuralnet package to create a neural network model that we can visualize. We will also use the nnet and RSNNS (Bergmeir, C., and Benítez, J. M. (2012)) packages. These are standard R packages and can be installed by the install.packages command or from the packages pane in RStudio. Although it is possible to use the nnet package directly, we are going to use it through the caret package, which is short for Classification and Regression Training. The caret package provides a standardized interface to work with many machine learning (ML) models in R, and also has some useful features for validation and performance assessment that we will use in this chapter and the next.

For our first examples of building neural networks, we will use the MNIST dataset, which is a classic classification...

You have been reading a chapter from
R Deep Learning Essentials - Second Edition
Published in: Aug 2018
Publisher: Packt
ISBN-13: 9781788992893
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime