We have just converted text from each raw newsgroup document into a sparse vector of a size of 500. For a vector from a document, each element represents the number of times a word token occurring in this document. Also, these 500 word tokens are selected based on their overall occurrences after text preprocessing, removal of stop words, and lemmatization. Now you may ask questions such as, is such occurrence vector representative enough, or does such an occurrence vector convey enough information that can be used to differentiate the document itself from documents on other topics? We can answer these questions easily by visualizing those representation vectors—we did a good job if document vectors from the same topic are nearby. But how? They are of 500 dimensions, while we can visualize data of at most three dimensions. We can...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine