Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Structures and Algorithms

You're reading from   Python Data Structures and Algorithms Improve application performance with graphs, stacks, and queues

Arrow left icon
Product type Paperback
Published in May 2017
Publisher Packt
ISBN-13 9781786467355
Length 310 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Benjamin Baka Benjamin Baka
Author Profile Icon Benjamin Baka
Benjamin Baka
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Python Objects, Types, and Expressions 2. Python Data Types and Structures FREE CHAPTER 3. Principles of Algorithm Design 4. Lists and Pointer Structures 5. Stacks and Queues 6. Trees 7. Hashing and Symbol Tables 8. Graphs and Other Algorithms 9. Searching 10. Sorting 11. Selection Algorithms 12. Design Techniques and Strategies 13. Implementations, Applications, and Tools

Summary


In this chapter, we have looked at tree structures and some example uses of them. We studied binary trees in particular, which is a subtype of trees where each node has at most two children.

We looked at how a binary tree can be used as a searchable data structure with a BST. We saw that, in most cases, finding data in a BST is faster than in a linked list, although this is not the case if the data is inserted sequentially, unless of course the tree is balanced.

The breadth- and depth-first search traversal modes were also implemented using queue recursion.

We also looked at how a binary tree can be used to represent an arithmetic or a Boolean expression. We built up an expression tree to represent an arithmetic expression. We showed how to use a stack to parse an expression written in RPN, build up the expression tree, and finally traverse it to get the result of the arithmetic expression.

Finally, we mentioned heaps, a specialization of a tree structure. We have tried to at least lay...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image