Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python 3 Text Processing with NLTK 3 Cookbook

You're reading from   Python 3 Text Processing with NLTK 3 Cookbook

Arrow left icon
Product type Paperback
Published in Aug 2014
Publisher
ISBN-13 9781782167853
Length 304 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Jacob Perkins Jacob Perkins
Author Profile Icon Jacob Perkins
Jacob Perkins
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Tokenizing Text and WordNet Basics FREE CHAPTER 2. Replacing and Correcting Words 3. Creating Custom Corpora 4. Part-of-speech Tagging 5. Extracting Chunks 6. Transforming Chunks and Trees 7. Text Classification 8. Distributed Processing and Handling Large Datasets 9. Parsing Specific Data Types A. Penn Treebank Part-of-speech Tags
Index

Flattening a deep tree


Some of the included corpora contain parsed sentences, which are often deep trees of nested phrases. Unfortunately, these trees are too deep to use for training a chunker, since IOB tag parsing is not designed for nested chunks. To make these trees usable for chunker training, we must flatten them.

Getting ready

We're going to use the first parsed sentence of the treebank corpus as our example. Here's a diagram showing how deeply nested this tree is:

You may notice that the part-of-speech tags are part of the tree structure instead of being included with the word. This will be handled later using the Tree.pos() method, which was designed specifically for combining words with preterminal Tree labels such as part-of-speech tags.

How to do it...

In transforms.py is a function named flatten_deeptree(). It takes a single Tree and will return a new Tree that keeps only the lowest-level trees. It uses a helper function, flatten_childtrees(), to do most of the work:

from nltk.tree...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime