Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Numpy Beginner's Guide (Update)

You're reading from   Numpy Beginner's Guide (Update) Build efficient, high-speed programs using the high-performance NumPy mathematical library

Arrow left icon
Product type Paperback
Published in Jun 2015
Publisher
ISBN-13 9781785281969
Length 348 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. NumPy Quick Start FREE CHAPTER 2. Beginning with NumPy Fundamentals 3. Getting Familiar with Commonly Used Functions 4. Convenience Functions for Your Convenience 5. Working with Matrices and ufuncs 6. Moving Further with NumPy Modules 7. Peeking into Special Routines 8. Assuring Quality with Testing 9. Plotting with matplotlib 10. When NumPy Is Not Enough – SciPy and Beyond 11. Playing with Pygame A. Pop Quiz Answers B. Additional Online Resources C. NumPy Functions' References
Index

Time for action – interpolating in one dimension

We will create data points using a sinc() function and add some random noise to it. After this, we will do a linear and cubic interpolation and plot the results.

  1. Create the data points and add noise to it:
    x = np.linspace(-18, 18, 36)
    noise = 0.1 * np.random.random(len(x))
    signal = np.sinc(x) + noise
  2. Create a linear interpolation function and apply it to an input array with five times as many data points:
    interpreted = interpolate.interp1d(x, signal)
    x2 = np.linspace(-18, 18, 180)
    y = interpreted(x2)
  3. Do the same as in the previous step, but with cubic interpolation:
    cubic = interpolate.interp1d(x, signal, kind="cubic")
    y2 = cubic(x2)
  4. Plot the results with matplotlib:
    plt.plot(x, signal, 'o', label="data")
    plt.plot(x2, y, '-', label="linear")
    plt.plot(x2, y2, '-', lw=2, label="cubic")
    plt.legend()
    plt.show()

    The following diagram is a plot of the data, linear, and cubic interpolation...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime