Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering SciPy

You're reading from   Mastering SciPy Implement state-of-the-art techniques to visualize solutions to challenging problems in scientific computing, with the use of the SciPy stack

Arrow left icon
Product type Paperback
Published in Nov 2015
Publisher
ISBN-13 9781783984749
Length 404 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Francisco Javier Blanco-Silva Francisco Javier Blanco-Silva
Author Profile Icon Francisco Javier Blanco-Silva
Francisco Javier Blanco-Silva
Francisco Javier B Silva Francisco Javier B Silva
Author Profile Icon Francisco Javier B Silva
Francisco Javier B Silva
Arrow right icon
View More author details
Toc

Symbolic solution of differential equations


Symbolic treatment of a few types of differential equations is coded in the SciPy stack through the module sympy.solvers.ode. At this point, only the following equations are accessible with this method:

  • First order separable

  • First order homogeneous

  • First order exact

  • First order linear

  • First order Bernoulli

  • Second order Liouville

  • Any order linear equations with constant coefficients

In addition to these, other equations might be solvable with the following techniques:

  • A power series solution for the first or second order equations (the latter only at ordinary and regular singular points)

  • The lie group method for the first order equations

Let's see these techniques in action with our one-dimensional examples, y' = y and the Bernoulli equation. Note the method of inputting a differential equation. We write it in the form F(t,y,y') = 0, and we feed the expression F(t,y,y') to the solver (see line 3 that follows). Also, notice how we code derivatives of a function...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image