Understand how to use PyTorch to build advanced neural network models
Get the best from PyTorch by working with Hugging Face, fastai, PyTorch Lightning, PyTorch Geometric, Flask, and Docker
Unlock faster training with multiple GPUs and optimize model deployment using efficient inference frameworks
Description
PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch deep learning book will help you uncover expert techniques to get the most out of your data and build complex neural network models.
You’ll build convolutional neural networks for image classification and recurrent neural networks and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation, using generative models, including diffusion models. You'll not only build and train your own deep reinforcement learning models in PyTorch but also learn to optimize model training using multiple CPUs, GPUs, and mixed-precision training. You’ll deploy PyTorch models to production, including mobile devices. Finally, you’ll discover the PyTorch ecosystem and its rich set of libraries. These libraries will add another set of tools to your deep learning toolbelt, teaching you how to use fastai to prototype models and PyTorch Lightning to train models. You’ll discover libraries for AutoML and explainable AI (XAI), create recommendation systems, and build language and vision transformers with Hugging Face.
By the end of this book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.
Who is this book for?
This deep learning with PyTorch book is for data scientists, machine learning engineers, machine learning researchers, and deep learning practitioners looking to implement advanced deep learning models using PyTorch. This book is ideal for those looking to switch from TensorFlow to PyTorch. Working knowledge of deep learning with Python is required.
What you will learn
Implement text, vision, and music generation models using PyTorch
Build a deep Q-network (DQN) model in PyTorch
Deploy PyTorch models on mobile devices (Android and iOS)
Become well versed in rapid prototyping using PyTorch with fastai
Perform neural architecture search effectively using AutoML
Easily interpret machine learning models using Captum
Design ResNets, LSTMs, and graph neural networks (GNNs)
Create language and vision transformer models using Hugging Face
I started self-education in an AI field using a practical approach. So, this book is everyday program copilot (as my cat :) ).
Amazon Verified review
Fabio MilanoSep 07, 2024
5
If you're looking for a hands-on, comprehensive guide to modern neural network architectures and the PyTorch ecosystem, this book is a gem! The author's decade of deep learning experience shines through with practical, step-by-step instructions that truly guide you in building state-of-the-art neural networks. The balance between depth and breadth is perfect.Whether you're a data scientist or machine learning engineer wanting to upskill in the latest deep learning tools and frameworks, or a software engineer curious about modern machine learning, this book has got you covered. The clear explanations and practical examples make complex concepts easy to grasp and apply. Highly recommended!
Amazon Verified review
Jonathan BirgeSep 03, 2024
3
While this book appears to be rather recent, it's actually a fairly throw-together second edition that doesn't address many of the outdated aspects of the first. In particular, some of the code examples won't run.The exposition is decent in parts, but generally hits on topics at such a superficial level that without the code to walk through, you don't really learn much. And, in fact, there are parts that are just plain wrong (such as the LSTM section, which shows an erroneous diagram of an LSTM).As a fun walk-through that will give you a gist of PyTorch, it's not bad. But you won't actually learn to use PyTorch yourself.
Amazon Verified review
Franziska KirschnerSep 02, 2024
5
Absolutely love this book both as a reference and to learn new techniques.I'm a ML researcher converting from Tensorflow to Pytorch and wanted a reference guide as I made the transition. The hands-on code examples were super useful to get up and running, and much more clearly explained than just trying to Google what to do.The pieces on engineering included a bunch of optimisations I hadn't considered in in the past, so I ended up learning a lot more than I anticipated. This book is very well-rounded and considers both the practical application and the theory behind it.I would highly recommend to any ML researcher or engineer!
Amazon Verified review
Roberto Williams BatistaAug 03, 2024
4
Ashish succeeds in covering the use of PyTorch in various use cases throughout the book. While the book doesn't delve deeply into theoretical concepts, it provides the essential and necessary information to understand and apply PyTorch in specific areas. The practical examples and explanations make it easier for readers to grasp the basics of PyTorch. Unfortunately, some chapters have little reference list which certainly could be expanded, and important figures could be better designed to be used in the book.The book is well-structured and accessible, making it suitable for beginners and those looking to gain a practical understanding of PyTorch's applications. Overall, it's a great starting point for anyone interested in exploring PyTorch and its use cases.
Ashish Ranjan Jha received his bachelor's degree in electrical engineering from IIT Roorkee (India), a master's degree in Computer Science from EPFL (Switzerland), and an MBA degree from Quantic School of Business (Washington). He has received a distinction in all 3 of his degrees. He has worked for large technology companies, including Oracle and Sony as well as the more recent tech unicorns such as Revolut, mostly focused on artificial intelligence. He currently works as a machine learning engineer. Ashish has worked on a range of products and projects, from developing an app that uses sensor data to predict the mode of transport to detecting fraud in car damage insurance claims. Besides being an author, machine learning engineer, and data scientist, he also blogs frequently on his personal blog site about the latest research and engineering topics around machine learning.
A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content
How can I cancel my subscription?
To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.
What are credits?
Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.
What happens if an Early Access Course is cancelled?
Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.
Where can I send feedback about an Early Access title?
If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team.
Can I download the code files for Early Access titles?
We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.
When we publish the book, the code files will also be available to download from the Packt website.
How accurate is the publication date?
The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.
How will I know when new chapters are ready?
We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.
I am a Packt subscriber, do I get Early Access?
Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.
How is Early Access delivered?
Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.
How do I buy Early Access content?
Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.
What is Early Access?
Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.