Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering PostgreSQL 15

You're reading from   Mastering PostgreSQL 15 Advanced techniques to build and manage scalable, reliable, and fault-tolerant database applications

Arrow left icon
Product type Paperback
Published in Jan 2023
Publisher Packt
ISBN-13 9781803248349
Length 522 pages
Edition 5th Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Hans-Jürgen Schönig Hans-Jürgen Schönig
Author Profile Icon Hans-Jürgen Schönig
Hans-Jürgen Schönig
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Chapter 1: PostgreSQL 15 Overview 2. Chapter 2: Understanding Transactions and Locking FREE CHAPTER 3. Chapter 3: Making Use of Indexes 4. Chapter 4: Handling Advanced SQL 5. Chapter 5: Log Files and System Statistics 6. Chapter 6: Optimizing Queries for Good Performance 7. Chapter 7: Writing Stored Procedures 8. Chapter 8: Managing PostgreSQL Security 9. Chapter 9: Handling Backup and Recovery 10. Chapter 10: Making Sense of Backups and Replication 11. Chapter 11: Deciding on Useful Extensions 12. Chapter 12: Troubleshooting PostgreSQL 13. Chapter 13: Migrating to PostgreSQL 14. Index 15. Other Books You May Enjoy

Understanding transaction isolation levels

Up until now, you have seen how to handle locking, as well as some basic concurrency. In this section, you will learn about transaction isolation. To me, this is one of the most neglected topics in modern software development. Only a small fraction of software developers is actually aware of this issue, which in turn leads to mind-boggling bugs.

Here is an example of what can happen:

Transaction 1

Transaction 2

BEGIN;

SELECT sum(balance) FROM t_account;

The user will see 300

BEGIN;

INSERT INTO t_account (balance) VALUES (100);

COMMIT;

SELECT sum(balance) FROM t_account;

The user will see 400

COMMIT;

Table 2.8 – Transactional visibility

Most users would actually expect the first transaction to always return 300, regardless of the second transaction. However, this isn’t true. By default, PostgreSQL runs in the READ COMMITTED transaction isolation mode. This means that every statement inside a transaction will get a new snapshot of the data, which will be constant throughout the query.

Note

A SQL statement will operate on the same snapshot and will ignore changes by concurrent transactions while it is running.

If you want to avoid this, you can use TRANSACTION ISOLATION LEVEL REPEATABLE READ. In this transaction isolation level, a transaction will use the same snapshot throughout the entire transaction. Here’s what will happen:

Transaction 1

Transaction 2

BEGIN TRANSACTION ISOLATION LEVEL

REPEATABLE READ;

SELECT sum(balance) FROM t_account;

User will see 300

BEGIN;

INSERT INTO t_account (balance) VALUES (100);

COMMIT;

SELECT sum(balance) FROM t_account;

SELECT sum(balance) FROM t_account;

User will see 300

The user will see 400

COMMIT;

Table 2.9 – Managing REPEATABLE READ transactions

As we’ve outlined, the first transaction will freeze its snapshot of the data and provide us with constant results throughout the entire transaction. This feature is especially important if you want to run reports. The first and last pages of a report should always be consistent and operate on the same data. Therefore, the repeatable read is key to consistent reports.

Note that isolation-related errors won’t always pop up instantly. Sometimes, trouble is noticed years after an application has been moved to production.

Note

Repeatable read is not more expensive than read committed. There is no need to worry about performance penalties. For normal online transaction processing (OLTP), read committed has various advantages because changes can be seen much earlier and the odds of unexpected errors are usually lower.

Considering serializable snapshot isolation transactions

On top of read committed and repeatable read, PostgreSQL offers Serializable Snapshot Isolation (SSI) transactions. So, overall, PostgreSQL supports three isolation levels (read committed, repeatable read, and serializable). Note that Read Uncommitted (which still happens to be the default in some commercial databases) is not supported; if you try to start a read uncommitted transaction, PostgreSQL will silently map to read committed. Let’s get back to the serializable isolation level.

Note

If you want to know more about this isolation level, consider checking out https://wiki.postgresql.org/wiki/Serializable.

The idea behind serializable isolation is simple; if a transaction is known to work correctly when there is only a single user, it will also work in the case of concurrency when this isolation level is chosen. However, users have to be prepared; transactions may fail (by design) and error out. In addition to this, a performance penalty has to be paid.

Note

Consider using serializable isolation only when you have a decent understanding of what is going on inside the database engine.

You have been reading a chapter from
Mastering PostgreSQL 15 - Fifth Edition
Published in: Jan 2023
Publisher: Packt
ISBN-13: 9781803248349
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image