Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Machine Learning with R

You're reading from   Mastering Machine Learning with R Advanced machine learning techniques for building smart applications with R 3.5

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher
ISBN-13 9781789618006
Length 354 pages
Edition 3rd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Cory Lesmeister Cory Lesmeister
Author Profile Icon Cory Lesmeister
Cory Lesmeister
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Preparing and Understanding Data FREE CHAPTER 2. Linear Regression 3. Logistic Regression 4. Advanced Feature Selection in Linear Models 5. K-Nearest Neighbors and Support Vector Machines 6. Tree-Based Classification 7. Neural Networks and Deep Learning 8. Creating Ensembles and Multiclass Methods 9. Cluster Analysis 10. Principal Component Analysis 11. Association Analysis 12. Time Series and Causality 13. Text Mining 14. Creating a Package 15. Other Books You May Enjoy

Univariate time series analysis

We'll focus on two methods to analyze and forecast a single time series: exponential smoothing and Autoregressive Integrated Moving Average (ARIMA) models. We'll start by looking at exponential smoothing models.

Like moving average models, exponential smoothing models use weights for past observations. But unlike moving average models, the more recent the observation, the more weight it's given relative to the later ones. There are three possible smoothing parameters to estimate: the overall smoothing parameter, a trend parameter, and the seasonal smoothing parameter. If no trend or seasonality is present, then these parameters become null.

The smoothing parameter produces a forecast with the following equation:

In this equation, Yt is the value at the time, T, and alpha (α) is the smoothing parameter. Algorithms optimize the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image