In this chapter, the goal was to discuss how important the element of time is in the field of machine learning and analytics, to identify the common traps when analyzing the time series, and to demonstrate the techniques and methods to work around these traps. We explored both the univariate and bivariate time series analysis for global temperature anomalies and human carbon dioxide emissions. Additionally, we looked at Granger causality to determine whether we can say, statistically speaking, that atmospheric CO2 levels cause surface temperature anomalies. We discovered that the p-values are higher than 0.05 but less than 0.10 for Granger causality from CO2 to temperature. It does show that Granger causality is an effective tool in investigating causality in machine learning problems. In the next chapter, we'll shift gears and take a look at how to apply learning...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand