When we discussed the Gaussian mixture algorithm, we defined it as Soft K-means. The reason is that each cluster was represented by three elements: mean, variance, and weight. Each sample always belongs to all clusters with a probability provided by the Gaussian distributions. This approach can be very useful when it's possible to manage the probabilities as weights, but in many other situations, it's preferable to determine a single cluster per sample. Such an approach is called hard clustering and K-means can be considered the hard version of a Gaussian mixture. In fact, when all variances Σi → 0, the distributions degenerate to Dirac's Deltas, which represent perfect spikes centered at a specific point. In this scenario, the only possibility to determine the most appropriate cluster is to find the shortest distance between...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine