Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Hadoop

You're reading from   Mastering Hadoop Go beyond the basics and master the next generation of Hadoop data processing platforms

Arrow left icon
Product type Paperback
Published in Dec 2014
Publisher
ISBN-13 9781783983643
Length 374 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Sandeep Karanth Sandeep Karanth
Author Profile Icon Sandeep Karanth
Sandeep Karanth
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Hadoop 2.X FREE CHAPTER 2. Advanced MapReduce 3. Advanced Pig 4. Advanced Hive 5. Serialization and Hadoop I/O 6. YARN – Bringing Other Paradigms to Hadoop 7. Storm on YARN – Low Latency Processing in Hadoop 8. Hadoop on the Cloud 9. HDFS Replacements 10. HDFS Federation 11. Hadoop Security 12. Analytics Using Hadoop A. Hadoop for Microsoft Windows Index

MapReduce input


The Map step of a MapReduce job hinges on the nature of the input provided to the job. The Map step provides maximum parallelism gains, and crafting this step smartly is important for job speedup. Data is split into chunks, and Map tasks operate on each of these chunks of data. Each chunk is called InputSplit. A Map task is asked to operate on each InputSplit class. There are two other classes, InputFormat and RecordReader, which are significant in handling inputs to Hadoop jobs.

The InputFormat class

The input data specification for a MapReduce Hadoop job is given via the InputFormat hierarchy of classes. The InputFormat class family has the following main functions:

  • Validating the input data. For example, checking for the presence of the file in the given path.

  • Splitting the input data into logical chunks (InputSplit) and assigning each of the splits to a Map task.

  • Instantiating a RecordReader object that can work on each InputSplit class and producing records to the Map task...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image