Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with the Elastic Stack

You're reading from   Machine Learning with the Elastic Stack Gain valuable insights from your data with Elastic Stack's machine learning features

Arrow left icon
Product type Paperback
Published in May 2021
Publisher Packt
ISBN-13 9781801070034
Length 450 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Camilla Montonen Camilla Montonen
Author Profile Icon Camilla Montonen
Camilla Montonen
Rich Collier Rich Collier
Author Profile Icon Rich Collier
Rich Collier
Bahaaldine Azarmi Bahaaldine Azarmi
Author Profile Icon Bahaaldine Azarmi
Bahaaldine Azarmi
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1 – Getting Started with Machine Learning with Elastic Stack
2. Chapter 1: Machine Learning for IT FREE CHAPTER 3. Chapter 2: Enabling and Operationalization 4. Section 2 – Time Series Analysis – Anomaly Detection and Forecasting
5. Chapter 3: Anomaly Detection 6. Chapter 4: Forecasting 7. Chapter 5: Interpreting Results 8. Chapter 6: Alerting on ML Analysis 9. Chapter 7: AIOps and Root Cause Analysis 10. Chapter 8: Anomaly Detection in Other Elastic Stack Apps 11. Section 3 – Data Frame Analysis
12. Chapter 9: Introducing Data Frame Analytics 13. Chapter 10: Outlier Detection 14. Chapter 11: Classification Analysis 15. Chapter 12: Regression 16. Chapter 13: Inference 17. Other Books You May Enjoy Appendix: Anomaly Detection Tips

Unsupervised versus supervised ML

While there are many subtypes of ML, two very prominent ones (and the two that are relevant to Elastic ML) are unsupervised and supervised.

In unsupervised ML, there is no outside guidance or direction from humans. In other words, the algorithms must learn (and model) the patterns of the data purely on their own. In general, the biggest challenge here is to have the algorithms accurately surface detected deviations of the input data's normal patterns to provide meaningful insight for the user. If the algorithm is not able to do this, then it is not useful and is unsuitable for use. Therefore, the algorithms must be quite robust and able to account for all of the intricacies of the way that the input data is likely to behave.

In supervised ML, input data (often multivariate data) is used to help model the desired outcome. The key difference from unsupervised ML is that the human decides, a priori, what variables to use as the input and also provides "ground-truth" examples of the expected target variable. Algorithms then assess how the input variables interact and influence the known output target. To accurately get the desired output (prediction, for example), the algorithm must have "the right kind of data" not only that indeed expresses the situation, but also so that there is enough diversity of the input data in order to effectively learn the relationship between the input data and the output target.

As such, both cases require good input data, good algorithmic approaches, and a good mechanism to allow the ML to both learn the behavior of the data and apply that learning to assess subsequent observations of that data. Let's dig a little deeper into the specifics of how Elastic ML leverages unsupervised and supervised learning.

You have been reading a chapter from
Machine Learning with the Elastic Stack - Second Edition
Published in: May 2021
Publisher: Packt
ISBN-13: 9781801070034
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime