Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning with R

You're reading from   Machine Learning with R Expert techniques for predictive modeling

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781788295864
Length 458 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Brett Lantz Brett Lantz
Author Profile Icon Brett Lantz
Brett Lantz
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Introducing Machine Learning FREE CHAPTER 2. Managing and Understanding Data 3. Lazy Learning – Classification Using Nearest Neighbors 4. Probabilistic Learning – Classification Using Naive Bayes 5. Divide and Conquer – Classification Using Decision Trees and Rules 6. Forecasting Numeric Data – Regression Methods 7. Black Box Methods – Neural Networks and Support Vector Machines 8. Finding Patterns – Market Basket Analysis Using Association Rules 9. Finding Groups of Data – Clustering with k-means 10. Evaluating Model Performance 11. Improving Model Performance 12. Specialized Machine Learning Topics Other Books You May Enjoy
Leave a review - let other readers know what you think
Index

Understanding decision trees

Decision tree learners are powerful classifiers that utilize a tree structure to model the relationships among the features and the potential outcomes. As illustrated in the following figure, this structure earned its name due to the fact that it mirrors the way a literal tree begins at a wide trunk and splits into narrower and narrower branches as it is followed upward. In much the same way, a decision tree classifier uses a structure of branching decisions that channel examples into a final predicted class value.

To better understand how this works in practice, let's consider the following tree, which predicts whether a job offer should be accepted. A job offer under consideration begins at the root node, where it is then passed through decision nodes that require choices to be made based on the attributes of the job. These choices split the data across branches that indicate potential outcomes of a decision. They are depicted here as yes or no outcomes...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image