Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning NumPy Array

You're reading from   Learning NumPy Array Supercharge your scientific Python computations by understanding how to use the NumPy library effectively

Arrow left icon
Product type Paperback
Published in Jun 2014
Publisher
ISBN-13 9781783983902
Length 164 pages
Edition Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Learning NumPy Array
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Getting Started with NumPy FREE CHAPTER 2. NumPy Basics 3. Basic Data Analysis with NumPy 4. Simple Predictive Analytics with NumPy 5. Signal Processing Techniques 6. Profiling, Debugging, and Testing 7. The Scientific Python Ecosystem Index

Moving averages


Moving averages are tools commonly used to analyze time-series data. A moving average defines a window of previously seen data that is averaged each time the window slides forward one period. The different types of moving average differ essentially in the weights used for averaging. The exponential moving average, for instance, has exponentially decreasing weights with time. This means that older values have less influence than newer values, which is sometimes desirable.

We can express an equal-weight strategy for the simple moving average as follows in the NumPy code:

weights = np.exp(np.linspace(-1., 0., N))
weights /= weights.sum()

A simple moving average uses equal weights which, in code, looks as follows:

def sma(arr, n):
   weights = np.ones(n) / n

   return np.convolve(weights, arr)[n-1:-n+1]

The following code plots the simple moving average for the 11- and 22-year sunspot cycle:

import numpy as np
import sys
import matplotlib.pyplot as plt

data = np.loadtxt(sys.argv...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime