Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Data Mining with Python

You're reading from   Learning Data Mining with Python Use Python to manipulate data and build predictive models

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781787126787
Length 358 pages
Edition 2nd Edition
Languages
Concepts
Arrow right icon
Toc

Table of Contents (14) Chapters Close

Preface 1. Getting Started with Data Mining 2. Classifying with scikit-learn Estimators FREE CHAPTER 3. Predicting Sports Winners with Decision Trees 4. Recommending Movies Using Affinity Analysis 5. Features and scikit-learn Transformers 6. Social Media Insight using Naive Bayes 7. Follow Recommendations Using Graph Mining 8. Beating CAPTCHAs with Neural Networks 9. Authorship Attribution 10. Clustering News Articles 11. Object Detection in Images using Deep Neural Networks 12. Working with Big Data 13. Next Steps...

Clustering News Articles


It won't hurt to read a little on the following topics

Clustering Evaluation

The evaluation of clustering algorithms is a difficult problem—on the one hand, we can sort of tell what good clusters look like; on the other hand, if we really know that, we should label some instances and use a supervised classifier! Much has been written on this topic. One slideshow on the topic that is a good introduction to the challenges follows: http://www.cs.kent.edu/~jin/DM08/ClusterValidation.pdf.

In addition, a very comprehensive (although now a little dated) paper on this topic is here: http://web.itu.edu.tr/sgunduz/courses/verimaden/paper/validity_survey.pdf.

The scikit-learn package does implement a number of the metrics described in those links, with an overview here: http://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation.

Using some of these, you can start evaluating which parameters need to be used for better clusterings. Using a Grid Search...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime