Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
IBM Watson Projects

You're reading from   IBM Watson Projects Eight exciting projects that put artificial intelligence into practice for optimal business performance

Arrow left icon
Product type Paperback
Published in Sep 2018
Publisher Packt
ISBN-13 9781789343717
Length 340 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Armen Pischdotchian Armen Pischdotchian
Author Profile Icon Armen Pischdotchian
Armen Pischdotchian
James D. Miller James D. Miller
Author Profile Icon James D. Miller
James D. Miller
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. The Essentials of IBM Watson FREE CHAPTER 2. A Basic Watson Project 3. An Automated Supply Chain Scenario 4. Healthcare Dialoguing 5. Social Media Sentiment Analysis 6. Pattern Recognition and Classification 7. Retail and Personalized Recommendations 8. Integration for Sales Forecasting 9. Anomaly Detection in Banking Using AI 10. What's Next 11. Other Books You May Enjoy

Summary ribbon

Across the top of the Top Predictors page is what I refer to as the summary ribbon of the predictive model generated by Watson Analytics. The summary ribbon includes thumbnail images showing the following information:

  • Targets
  • Data Quality (score)
  • Analysis Details
  • Top Field Associations
  • Model Highlight

An explanation of what information each thumbnail provides is given here:

  • Targets thumbnail:

The targets thumbnail lists the targets defined in the model. In our example, we have one target, Dollar Amount Sold. You also can click Edit and change the targets in the model.

  • Data Quality thumbnail:

The data quality score measures the degree to which the data used in the model is appropriate to be utilized for predictive analysis. It is an average of the data quality score for every field in the dataset, as determined by missing and constant values, influential...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image