In this chapter, we described deep learning methods in speech recognition. We looked at an overview of speech recognition software currently used in practice. We showed that traditional HMM-based methods might need to incorporate specific language models, whereas neural network-based methods can learn end to end speech transcription entirely from data. This is one main advantage of neural network models over HMM models. We developed a basic spoken digits recognition model using TensorFlow. We then used the open spoken digits dataset to train and make predictions on a test set. This example provided the background of the tasks involved in a speech recognition system like extraction of the frequency spectrum like MFCC features from the raw audio data and converting the text transcripts to labels. We then introduced the DeepSpeech architecture from Baidu, which is one of...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine