Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Game Physics Cookbook

You're reading from   Game Physics Cookbook Discover over 100 easy-to-follow recipes to help you implement efficient game physics and collision detection in your games

Arrow left icon
Product type Paperback
Published in Mar 2017
Publisher Packt
ISBN-13 9781787123663
Length 480 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Gabor Szauer Gabor Szauer
Author Profile Icon Gabor Szauer
Gabor Szauer
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Vectors FREE CHAPTER 2. Matrices 3. Matrix Transformations 4. 2D Primitive Shapes 5. 2D Collisions 6. 2D Optimizations 7. 3D Primitive Shapes 8. 3D Point Tests 9. 3D Shape Intersections 10. 3D Line Intersections 11. Triangles and Meshes 12. Models and Scenes 13. Camera and Frustum 14. Constraint Solving 15. Manifolds and Impulses 16. Springs and Joints A. Advanced Topics Index

Angular Velocity

With the PhysicsSystem updated, we can now simulate rigidbodies colliding in a linear fashion. This linear collision does not look realistic. To make our simulation more lifelike, we must add Linear Velocity to the rigidbodies. Every object will rotate around its center of mass. To keep the math simple, we assume that the center of mass for every object is at its world position.

In order to rotate an object, we have to store its orientation and understand the forces that affect this orientation. These forces are the Angular Acceleration, Angular Velocity, torque, and the moment of inertia. Each of these topics will be discussed in detail.

Angular Velocity and Acceleration

Angular Velocity is measured in radians per second (Angular Velocity and Acceleration). Angular Acceleration is measured in radians per second squared (Angular Velocity and Acceleration) . Angular Velocity Angular Velocity and Acceleration is the first derivative of orientation; Angular Acceleration Angular Velocity and Acceleration is the derivative of angular velocity:

Angular Velocity and Acceleration
Angular Velocity and Acceleration

We will store angular velocity as a vector. The direction of this...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image