Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Functional Python Programming

You're reading from   Functional Python Programming Discover the power of functional programming, generator functions, lazy evaluation, the built-in itertools library, and monads

Arrow left icon
Product type Paperback
Published in Apr 2018
Publisher Packt
ISBN-13 9781788627061
Length 408 pages
Edition 2nd Edition
Languages
Arrow right icon
Toc

Table of Contents (18) Chapters Close

Preface 1. Understanding Functional Programming FREE CHAPTER 2. Introducing Essential Functional Concepts 3. Functions, Iterators, and Generators 4. Working with Collections 5. Higher-Order Functions 6. Recursions and Reductions 7. Additional Tuple Techniques 8. The Itertools Module 9. More Itertools Techniques 10. The Functools Module 11. Decorator Design Techniques 12. The Multiprocessing and Threading Modules 13. Conditional Expressions and the Operator Module 14. The PyMonad Library 15. A Functional Approach to Web Services 16. Optimizations and Improvements 17. Other Books You May Enjoy

Exploratory data analysis

Later in this book, we'll use the field of exploratory data analysis (EDA) as a source for concrete examples of functional programming. This field is rich with algorithms and approaches to working with complex datasets; functional programming is often a very good fit between the problem domain and automated solutions.

While details vary from author to author, there are several widely accepted stages of EDA. These include the following:

  • Data preparation: This might involve extraction and transformation for source applications. It might involve parsing a source data format and doing some kind of data scrubbing to remove unusable or invalid data. This is an excellent application of functional design techniques.
  • Data exploration: This is a description of the available data. This usually involves the essential statistical functions. This is another excellent place to explore functional programming. We can describe our focus as univariate and bivariate statistics but that sounds too daunting and complex. What this really means is that we'll focus on mean, median, mode, and other related descriptive statistics. Data exploration may also involve data visualization. We'll skirt this issue because it doesn't involve very much functional programming. I'll suggest that you use a toolkit such as SciPy. Visit the following links to get more information how SciPY works and its usage:
  • Data modeling and machine learning: This tends to be proscriptive as it involves extending a model to new data. We're going to skirt around this because some of the models can become mathematically complex. If we spend too much time on these topics, we won't be able to focus on functional programming.
  • Evaluation and comparison: When there are alternative models, each must be evaluated to determine which is a better fit for the available data. This can involve ordinary descriptive statistics of model outputs. This can benefit from functional design techniques.

The goal of EDA is often to create a model that can be deployed as a decision support application. In many cases, a model might be a simple function. A simple functional programming approach can apply the model to new data and display results for human consumption.

You have been reading a chapter from
Functional Python Programming - Second Edition
Published in: Apr 2018
Publisher: Packt
ISBN-13: 9781788627061
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime