Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Developing IoT Projects with ESP32

You're reading from   Developing IoT Projects with ESP32 Unlock the full Potential of ESP32 in IoT development to create production-grade smart devices

Arrow left icon
Product type Paperback
Published in Nov 2023
Publisher Packt
ISBN-13 9781803237688
Length 578 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Vedat Ozan Oner Vedat Ozan Oner
Author Profile Icon Vedat Ozan Oner
Vedat Ozan Oner
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Introduction to IoT development and the ESP32 platform 2. Understanding the Development Tools FREE CHAPTER 3. Using ESP32 Peripherals 4. Employing Third-Party Libraries in ESP32 Projects 5. Project – Audio Player 6. Using Wi-Fi Communication for Connectivity 7. ESP32 Security Features for Production-Grade Devices 8. Connecting to Cloud Platforms and Using Services 9. Project – Smart Home 10. Machine Learning with ESP32 11. Developing on Edge Impulse 12. Project – Baby Monitor 13. Other Books You May Enjoy
14. Index

Next steps for TinyML development

In the scope of this book, we only discussed how to run inference on ESP32 by using different TinyML frameworks. However, in real-world scenarios, we need to do more. Let’s review the ML development stages once more and have a short discussion of them in terms of the engineering work needed:

  • Project requirements: A project starts with a need and requirements that list what to do in response to that need. A machine learning project is no exception for that. The requirements of an ML project usually reveal a lot about the nature of data in the project. With a requirement analysis, we can understand what data we need to collect, the sources of data, how we can collect it, any option to import external data, data versioning requirements, etc. In addition, a requirements document can have information about the performance of the output model, such as the accuracy, response time, and memory limitations. Project requirements have a direct...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image