Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Learning with Hadoop

You're reading from   Deep Learning with Hadoop Distributed Deep Learning with Large-Scale Data

Arrow left icon
Product type Paperback
Published in Feb 2017
Publisher Packt
ISBN-13 9781787124769
Length 206 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Dipayan Dev Dipayan Dev
Author Profile Icon Dipayan Dev
Dipayan Dev
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Introduction to Deep Learning FREE CHAPTER 2. Distributed Deep Learning for Large-Scale Data 3. Convolutional Neural Network 4. Recurrent Neural Network 5. Restricted Boltzmann Machines 6. Autoencoders 7. Miscellaneous Deep Learning Operations using Hadoop 1. References

Restricted Boltzmann machine


The Restricted Boltzmann machine (RBM) is a classic example of building blocks of deep probabilistic models that are used for deep learning. The RBM itself is not a deep model but can be used as a building block to form other deep models. In fact, RBMs are undirected probabilistic graphical models that consist of a layer of observed variables and a single layer of hidden variables, which may be used to learn the representation for the input. In this section, we will explain how the RBM can be used to build many deeper models.

Let us consider two examples to see the use case of RBM. RBM primarily operates on a binary version of factor analysis. Let us say we have a restaurant, and want to ask our customer to rate the food on a scale of 0 to 5. In the traditional approach, we will try to explain each food item and customer in terms of the variable's hidden factors. For example, foods such as pasta and lasagne will have a strong association with the Italian factors...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image