In this chapter, we introduced the basic ideas and models for using a neural network to learn distributed word representation. We particularly dove into the Word2Vec model and have shown how to train a model, as well as how to load the pre-trained vectors for downstream NLP applications. In the next chapter, we will talk about more advanced deep learning models in NLP, such as recurrent neural network, long-term short memory model, and several real-world applications.
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine