Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Learning By Example

You're reading from   Deep Learning By Example A hands-on guide to implementing advanced machine learning algorithms and neural networks

Arrow left icon
Product type Paperback
Published in Feb 2018
Publisher Packt
ISBN-13 9781788399906
Length 450 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ahmed Menshawy Ahmed Menshawy
Author Profile Icon Ahmed Menshawy
Ahmed Menshawy
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Data Science - A Birds' Eye View FREE CHAPTER 2. Data Modeling in Action - The Titanic Example 3. Feature Engineering and Model Complexity – The Titanic Example Revisited 4. Get Up and Running with TensorFlow 5. TensorFlow in Action - Some Basic Examples 6. Deep Feed-forward Neural Networks - Implementing Digit Classification 7. Introduction to Convolutional Neural Networks 8. Object Detection – CIFAR-10 Example 9. Object Detection – Transfer Learning with CNNs 10. Recurrent-Type Neural Networks - Language Modeling 11. Representation Learning - Implementing Word Embeddings 12. Neural Sentiment Analysis 13. Autoencoders – Feature Extraction and Denoising 14. Generative Adversarial Networks 15. Face Generation and Handling Missing Labels 16. Implementing Fish Recognition 17. Other Books You May Enjoy

Denoising autoencoders

We can take the autoencoder architecture further by forcing it to learn more important features about the input data. By adding noise to the input images and having the original ones as the target, the model will try to remove this noise and learn important features about them in order to come up with meaningful reconstructed images in the output. This kind of CAE architecture can be used to remove noise from input images. This specific variation of autoencoders is called denoising autoencoder:

Figure 10: Examples of original images and the same images after adding a bit of Gaussian noise

So let's start off by implementing the architecture in the following figure. The only extra thing that we have added to this denoising autoencoder architecture is some noise in the original input image:

Figure 11: General denoising architecture of autoencoders
...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image