Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Data Science Projects with Python

You're reading from   Data Science Projects with Python A case study approach to gaining valuable insights from real data with machine learning

Arrow left icon
Product type Paperback
Published in Jul 2021
Publisher Packt
ISBN-13 9781800564480
Length 432 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Stephen Klosterman Stephen Klosterman
Author Profile Icon Stephen Klosterman
Stephen Klosterman
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface
1. Data Exploration and Cleaning 2. Introduction to Scikit-Learn and Model Evaluation FREE CHAPTER 3. Details of Logistic Regression and Feature Exploration 4. The Bias-Variance Trade-Off 5. Decision Trees and Random Forests 6. Gradient Boosting, XGBoost, and SHAP Values 7. Test Set Analysis, Financial Insights, and Delivery to the Client Appendix

7. Test Set Analysis, Financial Insights, and Delivery to the Client

Activity 7.01: Deriving Financial Insights

Solution:

  1. Using the testing set, calculate the cost of all defaults if there were no counseling program.

    Use this code for the calculation:

    cost_of_defaults = np.sum(y_test_all * X_test_all[:,5])
    cost_of_defaults 

    The output should be this:

    60587763.0
  2. Calculate by what percent the cost of defaults can be decreased by the counseling program.

    The potential decrease in the cost of default is the greatest possible net savings of the counseling program, divided by the cost of all defaults in the absence of a program:

    net_savings[max_savings_ix]/cost_of_defaults

    The output should be this:

    0.2214260658542551

    Results indicate that we can decrease the cost of defaults by 22% using a counseling program, guided by predictive modeling.

  3. Calculate the net savings per account (considering all accounts it might be possible to counsel, in other words relative to the whole...
lock icon The rest of the chapter is locked
arrow left Previous Section
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image