Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Building Machine Learning Systems with Python

You're reading from   Building Machine Learning Systems with Python Expand your Python knowledge and learn all about machine-learning libraries in this user-friendly manual. ML is the next big breakthrough in technology and this book will give you the head-start you need.

Arrow left icon
Product type Paperback
Published in Jul 2013
Publisher Packt
ISBN-13 9781782161400
Length 290 pages
Edition 1st Edition
Languages
Arrow right icon
Toc

Table of Contents (20) Chapters Close

Building Machine Learning Systems with Python
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
1. Getting Started with Python Machine Learning FREE CHAPTER 2. Learning How to Classify with Real-world Examples 3. Clustering – Finding Related Posts 4. Topic Modeling 5. Classification – Detecting Poor Answers 6. Classification II – Sentiment Analysis 7. Regression – Recommendations 8. Regression – Recommendations Improved 9. Classification III – Music Genre Classification 10. Computer Vision – Pattern Recognition 11. Dimensionality Reduction 12. Big(ger) Data Where to Learn More about Machine Learning Index

Creating our first classifier and tuning it


The Naive Bayes classifiers reside in the sklearn.naive_bayes package. There are different kinds of Naive Bayes classifiers:

  • GaussianNB: This assumes the features to be normally distributed (Gaussian). One use case for it could be the classification of sex according to the given height and width of a person. In our case, we are given tweet texts from which we extract word counts. These are clearly not Gaussian distributed.

  • MultinomialNB: This assumes the features to be occurrence counts, which is relevant to us since we will be using word counts in the tweets as features. In practice, this classifier also works well with TF-IDF vectors.

  • BernoulliNB: This is similar to MultinomialNB, but more suited when using binary word occurrences and not word counts.

As we will mainly look at the word occurrences, for our purpose, MultinomialNB is best suited.

Solving an easy problem first

As we have seen when we looked at our tweet data, the tweets are not just...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime