Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Azure Data Engineer Associate Certification Guide

You're reading from   Azure Data Engineer Associate Certification Guide A hands-on reference guide to developing your data engineering skills and preparing for the DP-203 exam

Arrow left icon
Product type Paperback
Published in Feb 2022
Publisher Packt
ISBN-13 9781801816069
Length 574 pages
Edition 1st Edition
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Newton Alex Newton Alex
Author Profile Icon Newton Alex
Newton Alex
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Part 1: Azure Basics
2. Chapter 1: Introducing Azure Basics FREE CHAPTER 3. Part 2: Data Storage
4. Chapter 2: Designing a Data Storage Structure 5. Chapter 3: Designing a Partition Strategy 6. Chapter 4: Designing the Serving Layer 7. Chapter 5: Implementing Physical Data Storage Structures 8. Chapter 6: Implementing Logical Data Structures 9. Chapter 7: Implementing the Serving Layer 10. Part 3: Design and Develop Data Processing (25-30%)
11. Chapter 8: Ingesting and Transforming Data 12. Chapter 9: Designing and Developing a Batch Processing Solution 13. Chapter 10: Designing and Developing a Stream Processing Solution 14. Chapter 11: Managing Batches and Pipelines 15. Part 4: Design and Implement Data Security (10-15%)
16. Chapter 12: Designing Security for Data Policies and Standards 17. Part 5: Monitor and Optimize Data Storage and Data Processing (10-15%)
18. Chapter 13: Monitoring Data Storage and Data Processing 19. Chapter 14: Optimizing and Troubleshooting Data Storage and Data Processing 20. Part 6: Practice Exercises
21. Chapter 15: Sample Questions with Solutions 22. Other Books You May Enjoy

Interpreting a Spark DAG

A DAG is just a regular graph with nodes and edges but with no cycles or loops. In order to understand a Spark DAG, we first have to understand where a DAG comes into the picture during the execution of a Spark job.

When a user submits a Spark job, the Spark driver first identifies all the tasks involved in accomplishing the job. It then figures out which of these tasks can be run in parallel and which tasks depend on other tasks. Based on this information, it converts the Spark job into a graph of tasks. The nodes at the same level indicate jobs that can be run in parallel, and the nodes at different levels indicate tasks that need to be run after the previous nodes. This graph is acyclic, as denoted by A in DAG. This DAG is then converted into a physical execution plan. In the physical execution plan, nodes that are at the same level are segregated into stages. Once all the tasks and stages are complete, the Spark job is termed as completed.

Let&apos...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime