Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Automated Machine Learning

You're reading from   Automated Machine Learning Hyperparameter optimization, neural architecture search, and algorithm selection with cloud platforms

Arrow left icon
Product type Paperback
Published in Feb 2021
Publisher Packt
ISBN-13 9781800567689
Length 312 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Adnan Masood Adnan Masood
Author Profile Icon Adnan Masood
Adnan Masood
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Introduction to Automated Machine Learning
2. Chapter 1: A Lap around Automated Machine Learning FREE CHAPTER 3. Chapter 2: Automated Machine Learning, Algorithms, and Techniques 4. Chapter 3: Automated Machine Learning with Open Source Tools and Libraries 5. Section 2: AutoML with Cloud Platforms
6. Chapter 4: Getting Started with Azure Machine Learning 7. Chapter 5: Automated Machine Learning with Microsoft Azure 8. Chapter 6: Machine Learning with AWS 9. Chapter 7: Doing Automated Machine Learning with Amazon SageMaker Autopilot 10. Chapter 8: Machine Learning with Google Cloud Platform 11. Chapter 9: Automated Machine Learning with GCP 12. Section 3: Applied Automated Machine Learning
13. Chapter 10: AutoML in the Enterprise 14. Other Books You May Enjoy

Automated ML challenges and opportunities

We have discussed the benefits of automated ML, but all these advantages are not without their fair share of challenges. Automated ML is not a silver bullet and there are several scenarios where it would not work. The following are some challenges and scenarios where automated ML may not be the best fit.

Not having enough data

The size of the dataset is a critical component for automated ML to work well. When feature engineering, hyperparameter optimization, and neural architectural search are used on small datasets, they do not yield good results. The dataset has to be significantly large for automated ML tools to do their job effectively. If this is not the case with your dataset, you might want to try the alternative approach of building models manually.

Model performance

In a small number of cases, the performance you get from out-of-the-box models may not work – you may have to hand-tune the model for performance or...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime