K-means is one of the most popular unsupervised algorithms for data clustering, which is used when we have unlabeled data without defined categories or groups. The number of clusters is represented by the k variable. This is an iterative algorithm that assigns the data points to a specific cluster based on the distance from the arbitrary centroid. During the first iteration, the centroids are randomly defined and the data points are assigned to the cluster based on the least vicinity from the centroid. Once the data points are allocated, within the subsequent iterations, the centroids are realigned to the mean of the data points and the data points are once again added to the clusters based on the least vicinity from the centroids. These steps are iterated to the point where the centroids do not change more than the set threshold. Let's illustrate the...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine