Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Analytics with R and Tableau

You're reading from   Advanced Analytics with R and Tableau Advanced analytics using data classification, unsupervised learning and data visualization

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher Packt
ISBN-13 9781786460110
Length 178 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Roberto Rösler Roberto Rösler
Author Profile Icon Roberto Rösler
Roberto Rösler
Ruben Oliva Ramos Ruben Oliva Ramos
Author Profile Icon Ruben Oliva Ramos
Ruben Oliva Ramos
Jen Stirrup Jen Stirrup
Author Profile Icon Jen Stirrup
Jen Stirrup
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Advanced Analytics with R and Tableau FREE CHAPTER 2. The Power of R 3. A Methodology for Advanced Analytics Using Tableau and R 4. Prediction with R and Tableau Using Regression 5. Classifying Data with Tableau 6. Advanced Analytics Using Clustering 7. Advanced Analytics with Unsupervised Learning 8. Interpreting Your Results for Your Audience Index

Clustering in Tableau


Tableau's power has always been its user-focused flexibility, and working with the user in order to achieve insights at the speed of thought. Tableau's clustering functionality continues the tradition of putting the user front-and-center of the analytics process. So, for example, Tableau allows us to quickly customize geographical areas, for example, which in turn can yield new insights and patterns held within the groups.

Tableau 10.0 comes with k-means clustering as a built-in function. K-means is a popular clustering algorithm that is useful, easy to implement, and it can be faster than some other clustering methods, particularly in the case of big datasets.

We can see the data being grouped, or clustered, around centers. The algorithm works firstly by choosing the cluster centers randomly. Then, it works out the nearest cluster centers, and arranges the data points around it.

K-means then works out the actual cluster center. It then reassigns the data points to the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime