Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
A Handbook of Mathematical Models with Python

You're reading from   A Handbook of Mathematical Models with Python Elevate your machine learning projects with NetworkX, PuLP, and linalg

Arrow left icon
Product type Paperback
Published in Aug 2023
Publisher Packt
ISBN-13 9781804616703
Length 144 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Ranja Sarkar Ranja Sarkar
Author Profile Icon Ranja Sarkar
Ranja Sarkar
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1:Mathematical Modeling
2. Chapter 1: Introduction to Mathematical Modeling FREE CHAPTER 3. Chapter 2: Machine Learning vis-à-vis Mathematical Modeling 4. Part 2:Mathematical Tools
5. Chapter 3: Principal Component Analysis 6. Chapter 4: Gradient Descent 7. Chapter 5: Support Vector Machine 8. Chapter 6: Graph Theory 9. Chapter 7: Kalman Filter 10. Chapter 8: Markov Chain 11. Part 3:Mathematical Optimization
12. Chapter 9: Exploring Optimization Techniques 13. Chapter 10: Optimization Techniques for Machine Learning 14. Index 15. Other Books You May Enjoy

Complex optimization algorithms

The nature of the objective function helps select the algorithm to be considered for the optimization of a given business problem. The more information that is available about the function, the easier it is to optimize the function. Of most importance is the fact that the objective function can be differentiated at any point in the search space.

Differentiability of objective functions

A differentiable objective function is one for which the derivative can be calculated at any given point in input space. The derivative (slope) is the rate of change of the function at that point. The Hessian is the rate at which the derivative of the function changes. Calculus helps optimize simple differentiable functions analytically. For differentiable objective functions, gradient-based optimization algorithms are used. However, there are objective functions for which the derivative cannot be computed, typically for very complex (noisy, multimodal, etc.) functions...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image