Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
15 Math Concepts Every Data Scientist Should Know

You're reading from   15 Math Concepts Every Data Scientist Should Know Understand and learn how to apply the math behind data science algorithms

Arrow left icon
Product type Paperback
Published in Aug 2024
Publisher Packt
ISBN-13 9781837634187
Length 510 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
David Hoyle David Hoyle
Author Profile Icon David Hoyle
David Hoyle
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: Essential Concepts
2. Chapter 1: Recap of Mathematical Notation and Terminology FREE CHAPTER 3. Chapter 2: Random Variables and Probability Distributions 4. Chapter 3: Matrices and Linear Algebra 5. Chapter 4: Loss Functions and Optimization 6. Chapter 5: Probabilistic Modeling 7. Part 2: Intermediate Concepts
8. Chapter 6: Time Series and Forecasting 9. Chapter 7: Hypothesis Testing 10. Chapter 8: Model Complexity 11. Chapter 9: Function Decomposition 12. Chapter 10: Network Analysis 13. Part 3: Selected Advanced Concepts
14. Chapter 11: Dynamical Systems 15. Chapter 12: Kernel Methods 16. Chapter 13: Information Theory 17. Chapter 14: Non-Parametric Bayesian Methods 18. Chapter 15: Random Matrices 19. Index 20. Other Books You May Enjoy

Random matrices and high-dimensional covariance matrices

The examples of large random matrices in the previous section were all square matrices. However, in real-world data science, not all matrices are square. Take the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:munder underaccent="false"><mml:mrow><mml:munder underaccent="false"><mml:mrow><mml:mi>X</mml:mi></mml:mrow><mml:mo>_</mml:mo></mml:munder></mml:mrow><mml:mo>_</mml:mo></mml:munder></mml:math> data matrix that we encountered in Chapter 3 when doing Principal Component Analysis (PCA). It is an <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>N</mml:mi><mml:mo>×</mml:mo><mml:mi>d</mml:mi></mml:math> matrix, where <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>N</mml:mi></mml:math> is the number of data points and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>d</mml:mi></mml:math> is the number of features. We will assume, for this section, that the data has already been mean-centered, so that the sum of each column of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:munder underaccent="false"><mml:mrow><mml:munder underaccent="false"><mml:mrow><mml:mi>X</mml:mi></mml:mrow><mml:mo>_</mml:mo></mml:munder></mml:mrow><mml:mo>_</mml:mo></mml:munder></mml:math> is 0.

The <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:munder underaccent="false"><mml:mrow><mml:munder underaccent="false"><mml:mrow><mml:mi>X</mml:mi></mml:mrow><mml:mo>_</mml:mo></mml:munder></mml:mrow><mml:mo>_</mml:mo></mml:munder></mml:math> matrix is what we use to do PCA. It is also the design matrix that we use when building statistical models. So, the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:munder underaccent="false"><mml:mrow><mml:munder underaccent="false"><mml:mrow><mml:mi>X</mml:mi></mml:mrow><mml:mo>_</mml:mo></mml:munder></mml:mrow><mml:mo>_</mml:mo></mml:munder></mml:math> matrix is non-square (unless <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>N</mml:mi><mml:mo>=</mml:mo><mml:mi>d</mml:mi><mml:mo>)</mml:mo></mml:math>. However, in practice, we usually derive a square matrix from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:munder underaccent="false"><mml:mrow><mml:munder underaccent="false"><mml:mrow><mml:mi>X</mml:mi></mml:mrow><mml:mo>_</mml:mo></mml:munder></mml:mrow><mml:mo>_</mml:mo></mml:munder></mml:math>. For example, when doing PCA, we would calculate the sample covariance matrix <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mover accent="true"><mml:mrow><mml:munder underaccent="false"><mml:mrow><mml:munder underaccent="false"><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mo>_</mml:mo></mml:munder></mml:mrow><mml:mo>_</mml:mo></mml:munder></mml:mrow><mml:mo>^</mml:mo></mml:mover></mml:math>, which is defined as follows:

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mrow><mover><munder><munder><mi>C</mi><mo stretchy="true">_</mo></munder><mo stretchy="true">_</mo></munder><mo stretchy="true">ˆ</mo></mover><mo>=</mo><mfrac><mn>1</mn><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></mfrac><msup><munder><munder><mi>X</mi><mo stretchy="true">_</mo></munder><mo stretchy="true">_</mo></munder><mi mathvariant="normal">⊤</mi></msup><munder><munder><mi>X</mi><mo stretchy="true">_</mo></munder><mo stretchy="true">_</mo></munder></mrow></mrow></math>

Eq.10

The <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mover accent="true"><mml:mrow><mml:munder underaccent="false"><mml:mrow><mml:munder underaccent="false"><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mo>_</mml:mo></mml:munder></mml:mrow><mml:mo>_</mml:mo></mml:munder></mml:mrow><mml:mo>^</mml:mo></mml:mover></mml:math> matrix in Eq.10 is <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>d</mml:mi><mml:mo>×</mml:mo><mml:mi>d</mml:mi></mml:math> and symmetric. If we had many features, it would be a large matrix. Since <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover><munder><munder><mi>C</mi><mo stretchy="true">_</mo></munder><mo stretchy="true">_</mo></munder><mo stretchy="true">ˆ</mo></mover></mrow></math>is derived from our data, which contains...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image