Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds

3 ways JupyterLab will revolutionize Interactive Computing

Save for later
  • 4 min read
  • 17 Nov 2017

article-image
The history of the Jupyter notebook is quite interesting. It started as a spin-off project to IPython in 2011, with support for the leading languages for data science such as R, Python, and Julia. As the project grew, Jupyter’s core focus shifted to being more interactive and user-friendly. It was soon clear that Jupyter wasn’t just an extension of IPython - leading to the ‘Big Split’ in 2014. Code reusability, easy sharing, and deployment, as well as extensive support for third-party extensions - these are some of the factors which have led to Jupyter becoming the popular choice of notebook for most data professionals. And now, Jupyter plan to go a level beyond with JupyterLab - the next-gen Jupyter notebook with strong interactive and collaborative computing features.

[box type="info" align="" class="" width=""]

What is JupyterLab?

JupyterLab is the next-generation end-user version of the popular Jupyter notebook, designed to enhance interaction and collaboration among the users. It takes all the familiar features of the Jupyter notebook and presents them through a powerful, user-friendly interface.[/box]

Here are 3 ways, or reasons shall we say, to look forward to this exciting new project, and how it will change interactive computing as we know it.

[dropcap]1[/dropcap]

Improved UI/UX

One of Jupyter’s strongest and most popular feature is that it is very user-friendly, and the overall experience of working with Jupyter is second to none. With improvements in the UI/UX, JupyterLab offers a cleaner interface, with an overall feel very similar to the current Jupyter notebooks. Although JupyterLab has been built with a web-first vision, it also provides a native Electron app that provides a simplified user experience.The other key difference is that JupyterLab is pretty command-centric, encouraging users to prefer keyboard shortcuts for quicker tasks. These shortcuts are a bit different from the other text editors and IDEs, but they are customizable.

[dropcap]2[/dropcap]

Better workflow support

Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at €18.99/month. Cancel anytime

Many data scientists usually start coding on an interactive shell and then migrate their code onto a notebook for building and deployment purposes. With JupyterLab, users can perform all these activities more seamlessly and with minimal effort. It offers a document-less console for quick data exploration and offers an integrated text editor for running blocks of code outside the notebook.

[dropcap]3[/dropcap]

Better interactivity and collaboration

Probably the defining feature which propels JupyterLab over Jupyter and the other notebooks is how interactive and collaborative it is, as compared to the other notebooks. JupyterLab has a side by side editing feature and provides a crisp layout which allows for viewing your data, the notebook, your command console and some graphical display, all at the same time.

Better real-time collaboration is another big feature promised by JupyterLab, where users will be able to share their notebooks on a Google drive or Dropbox style, without having to switch over to different tool/s. It would also support a plethora of third-party extensions to this effect, with Google drive extension being the most talked about. Popular Python visualization libraries such as Bokeh will now be integrated with JupyterLab, as will extensions to view and handle different file types such as CSV for interactive rendering, and GeoJSON for geographic data structures.

JupyterLab has gained a lot of traction in the last few years. While it is still some time away from being generally available, the current indicators look quite strong. With over 2,500 stars and 240 enhancement requests on GitHub already, the strong interest among the users is pretty clear. Judging by the initial impressions it has had on some users, JupyterLab hasn’t made a bad start at all, and looks well and truly set to replace the current Jupyter notebooks in the near future.