Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Unity 5.x Game AI Programming Cookbook

You're reading from   Unity 5.x Game AI Programming Cookbook Build and customize a wide range of powerful Unity AI systems with over 70 hands-on recipes and techniques

Arrow left icon
Product type Paperback
Published in Mar 2016
Publisher Packt
ISBN-13 9781783553570
Length 278 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Jorge Palacios Jorge Palacios
Author Profile Icon Jorge Palacios
Jorge Palacios
Jorge Elieser P Garrido Jorge Elieser P Garrido
Author Profile Icon Jorge Elieser P Garrido
Jorge Elieser P Garrido
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Behaviors – Intelligent Movement FREE CHAPTER 2. Navigation 3. Decision Making 4. Coordination and Tactics 5. Agent Awareness 6. Board Games AI 7. Learning Techniques 8. Miscellaneous Index

Learning to use Naïve Bayes classifiers


Learning to use examples could be hard even for humans. For example, given a list of examples for two sets of values, it's not always easy to see the connection between them. One way of solving this problem would be to classify one set of values and then give it a try, and that's where classifier algorithms come in handy.

Naïve Bayes classifiers are prediction algorithms for assigning labels to problem instances; they apply probability and Bayes' theorem with a strong-independence assumption between the variables to analyze. One of the key advantages of Bayes' classifiers is scalability.

Getting ready…

Since it is hard to build a general classifier, we will build ours assuming that the inputs are positive- and negative-labeled examples. So, the first thing that we need to address is defining the labels that our classifier will handle using an enum data structure called NBCLabel:

public enum NBCLabel
{
    POSITIVE,
    NEGATIVE
}

How to do it…

The classifier...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image