Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Unity 5.x Game AI Programming Cookbook

You're reading from   Unity 5.x Game AI Programming Cookbook Build and customize a wide range of powerful Unity AI systems with over 70 hands-on recipes and techniques

Arrow left icon
Product type Paperback
Published in Mar 2016
Publisher Packt
ISBN-13 9781783553570
Length 278 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Jorge Palacios Jorge Palacios
Author Profile Icon Jorge Palacios
Jorge Palacios
Jorge Elieser P Garrido Jorge Elieser P Garrido
Author Profile Icon Jorge Elieser P Garrido
Jorge Elieser P Garrido
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Behaviors – Intelligent Movement 2. Navigation FREE CHAPTER 3. Decision Making 4. Coordination and Tactics 5. Agent Awareness 6. Board Games AI 7. Learning Techniques 8. Miscellaneous Index

Wandering around

This technique works like a charm for random crowd simulations, animals, and almost any kind of NPC that requires random movement when idle.

Getting ready

We need to add another function to our AgentBehaviour class called OriToVec that converts an orientation value to a vector.

public Vector3 GetOriAsVec (float orientation) {
    Vector3 vector  = Vector3.zero;
    vector.x = Mathf.Sin(orientation * Mathf.Deg2Rad) * 1.0f;
    vector.z = Mathf.Cos(orientation * Mathf.Deg2Rad) * 1.0f;
    return vector.normalized;
}

How to do it...

We could see it as a big three-step process in which we manipulate the internal target position in a parameterized random way, face that position, and move accordingly:

  1. Create the Wander class deriving from Face:
    using UnityEngine;
    using System.Collections;
    
    public class Wander : Face
    {
        public float offset;
        public float radius;
        public float rate;
    }
  2. Define the Awake function in order to set up the internal target:
    public override void Awake()
    {
        target = new GameObject();
        target.transform.position = transform.position;
        base.Awake();
    }
  3. Define the GetSteering function:
    public override Steering GetSteering()
    {
        Steering steering = new Steering();
        float wanderOrientation = Random.Range(-1.0f, 1.0f) * rate;
        float targetOrientation = wanderOrientation + agent.orientation;
        Vector3 orientationVec = OriToVec(agent.orientation);
        Vector3 targetPosition = (offset * orientationVec) + transform.position;
        targetPosition = targetPosition + (OriToVec(targetOrientation) * radius);
        targetAux.transform.position = targetPosition;
        steering = base.GetSteering();
        steering.linear = targetAux.transform.position - transform.position;
        steering.linear.Normalize();
        steering.linear *= agent.maxAccel;
        return steering;
    }

How it works...

The behavior takes into consideration two radii in order to get a random position to go to next, looks towards that random point, and converts the computed orientation into a direction vector in order to advance.

How it works...

A visual description of the parameters for creating the Wander behavior

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime