Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Statistics and Machine Learning with R Workshop

You're reading from   The Statistics and Machine Learning with R Workshop Unlock the power of efficient data science modeling with this hands-on guide

Arrow left icon
Product type Paperback
Published in Oct 2023
Publisher Packt
ISBN-13 9781803240305
Length 516 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Liu Peng Liu Peng
Author Profile Icon Liu Peng
Liu Peng
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Part 1:Statistics Essentials
2. Chapter 1: Getting Started with R FREE CHAPTER 3. Chapter 2: Data Processing with dplyr 4. Chapter 3: Intermediate Data Processing 5. Chapter 4: Data Visualization with ggplot2 6. Chapter 5: Exploratory Data Analysis 7. Chapter 6: Effective Reporting with R Markdown 8. Part 2:Fundamentals of Linear Algebra and Calculus in R
9. Chapter 7: Linear Algebra in R 10. Chapter 8: Intermediate Linear Algebra in R 11. Chapter 9: Calculus in R 12. Part 3:Fundamentals of Mathematical Statistics in R
13. Chapter 10: Probability Basics 14. Chapter 11: Statistical Estimation 15. Chapter 12: Linear Regression in R 16. Chapter 13: Logistic Regression in R 17. Chapter 14: Bayesian Statistics 18. Index 19. Other Books You May Enjoy

Dealing with an imbalanced dataset

When building a logistic regression model using a dataset whose target is a binary outcome, it could be the case that the target values are not equally distributed. This means that we would observe more non-events (y = 0) than events (y = 1), as is often the case in applications such as fraudulent transactions in banks, spam/phishing emails for corporate employees, identification of diseases such as cancer, and natural disasters such as earthquakes. In these situations, the classification performance may be dominated by the majority class.

Such domination can result in misleadingly high accuracy scores, which correspond to poor predictive performance. To see this, suppose we are developing a default prediction model using a dataset that consists of 1,000 observations, where only 10 (or 1%) of them are default cases. A naive model would simply predict every observation as non-default, resulting in a 99% accuracy.

When we encounter an imbalanced...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image