Chapter 6
[6:1] Probabilistic Graphical Models: Overview and Motivation, D. Koller - Stanford University - http://www.youtube.com
[6:2] Introduction to Machine Learning §3.2 Bayesian Decision Theory, E. Alpaydin - MIT Press 2004
[6:3] Machine Learning: A Probabilistic Perspective §10 Directed graphical models, K. Murphy - MIT Press 2012
[6:4] Probabilistic Entity-Relationship Models, PRMs, and Plate Models, D. Heckerman, C. Meek, D. Koller -Stanford University - http://robotics.stanford.edu/~koller/Papers/Heckerman+al:SRL07.pdf
[6:5] Think Bayes Bayesian Statistics Made Simple §1 Bayes's Theorem, A. Downey - Green Tea Press 2010 - http://greenteapress.com/thinkbayes/html/index.html
[6:6] Machine Learning: A Probabilistic Perspective Information §2.8.3 Theory-Mutual Information, K. Murphy – MIT Press 2012
[6:7] Introduction to Information Retrieval §13.2 Naïve Bayes text classification, C.D. Manning, P. Raghavan and H. Schütze, - Cambridge University...