Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
R Deep Learning Cookbook

You're reading from   R Deep Learning Cookbook Solve complex neural net problems with TensorFlow, H2O and MXNet

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher Packt
ISBN-13 9781787121089
Length 288 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Achyutuni Sri Krishna Rao Achyutuni Sri Krishna Rao
Author Profile Icon Achyutuni Sri Krishna Rao
Achyutuni Sri Krishna Rao
PKS Prakash PKS Prakash
Author Profile Icon PKS Prakash
PKS Prakash
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Started FREE CHAPTER 2. Deep Learning with R 3. Convolution Neural Network 4. Data Representation Using Autoencoders 5. Generative Models in Deep Learning 6. Recurrent Neural Networks 7. Reinforcement Learning 8. Application of Deep Learning in Text Mining 9. Application of Deep Learning to Signal processing 10. Transfer Learning

Data normalization


Data normalization is a critical step in machine learning to bring data to a similar scale. It is also known as feature scaling and is performed as data preprocessing.

Note

The correct normalization is very critical in neural networks, else it will lead to saturation within the hidden layers, which in turn leads to zero gradient and no learning will be possible.

Getting ready

There are multiple ways to perform normalization:

  • Min-max standardization: The min-max retains the original distribution and scales the feature values between [0, 1], with 0 as the minimum value of the feature and 1 as the maximum value. The standardization is performed as follows:

Here, x' is the normalized value of the feature. The method is sensitive to outliers in the dataset.

  • Decimal scaling: This form of scaling is used where values of different decimal ranges are present. For example, two features with different bounds can be brought to a similar scale using decimal scaling as follows:

x'=x/10n

  • Z-score...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image