Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python for Finance

You're reading from   Python for Finance If your interest is finance and trading, then using Python to build a financial calculator makes absolute sense. As does this book which is a hands-on guide covering everything from option theory to time series.

Arrow left icon
Product type Paperback
Published in Apr 2014
Publisher
ISBN-13 9781783284375
Length 408 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Yuxing Yan Yuxing Yan
Author Profile Icon Yuxing Yan
Yuxing Yan
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction and Installation of Python FREE CHAPTER 2. Using Python as an Ordinary Calculator 3. Using Python as a Financial Calculator 4. 13 Lines of Python to Price a Call Option 5. Introduction to Modules 6. Introduction to NumPy and SciPy 7. Visual Finance via Matplotlib 8. Statistical Analysis of Time Series 9. The Black-Scholes-Merton Option Model 10. Python Loops and Implied Volatility 11. Monte Carlo Simulation and Options 12. Volatility Measures and GARCH Index

Definition of an implied volatility

From the previous chapter, we know that for a set of input variables—S (the present stock price), X (the exercise price), T (the maturity date in years), r (the continuously compounded risk-free rate), and sigma (the volatility of the stock, that is, the annualized standard deviation of its returns)—we could estimate the price of a call option based on the Black-Scholes-Merton option model. Recall that to price a European call option, we have the following Python code of five lines:

from scipy import log,exp,sqrt,stats
def bs_call(S,X,T,r,sigma):
    d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))
    d2 = d1-sigma*sqrt(T)
    return S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2)

After entering a set of five values, we can estimate the call price as follows:

>>>bs_call(40,40,0.5,0.05,0.25)
3.3040017284767735

On the other hand, if we know S, X, T, r, and c, how can we estimate sigma? Here, sigma is our implied volatility....

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime