In this chapter, we will introduce deep learning(DL) and deep neural networks (DNNs), that is, neural networks with multiple hidden layers. You may wonder what the point of using more than one hidden layer is, given the universal approximation theorem. This is in no way a naive question, and for a long time neural networks were used in that way. Without going into too much detail, one reason is that approximating a complex function might require a huge number of neurons in the hidden layer, making it impractical to use. There is also another, more important, reason for using deep networks, which is not directly related to the number of hidden layers, but to the level of learning. A deep network does not simply learn to predict output Y given input X; it also understands basic features of the input. It's able to learn abstractions of features of...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand