Summary
Our Python data projects typically start with raw data stored in a range of formats and exported from a variety of software tools. Among the most popular tabular formats and tools are CSV and Excel files, SQL tables, and SPSS, Stata, SAS, and R datasets. We converted data from all of these sources into a pandas DataFrame in this chapter, and addressed the most common challenges. We also explored approaches to persisting tabular data. We will work with data in other formats in the next chapter.
Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/p8uSgEAETX